High Thermal Mass Walls
Two foot thick Rammed Earth Walls have been used to mitigate intense temperatures throughout the day. The wall hold heat during the day and release heat at night.

Permuable Parking Surface
Crushed Gravel has been used to create the parking surface so that water can drain naturally through the space. Concrete Walkways have been added only in places where necessary to allow ADA circulation.

Solar Opportunity
The building has been rotated 15 degrees off the EW axis which allow the majority of the spaces to be naturally lit throughout the day. The remaining spaces are lit by solar powered lights.

Water Conservation
All sinks and toilets are low flow fixtures that eliminate water waste. These fixtures use water from the underground cistern. To further aid the conservation, all toilets are pit toilets that use no water.

Sustainable Materials
Natural materials have been used throughout the design including Rammed Earth, locally sourced Red Cedar and glass. The use of non-sustainable materials has been limited to only what is necessary.
Weather patterns were analyzed to determine an efficient use of the natural environment. Harsh highs and lows resulted in high thermal mass walls and small rain amounts resulted in a rainwater collection system.

Site views were analyzed and found that there were multiple unique views. Including Cap Rock, multiple rock outcroppings, San Bernardino Mountain Ranges, and Quad Mountain Ranges. Outdoor experiences were then focused on these views.

Parish Daisies are just one of the rare plant species located in Joshua Tree National Park. Much of the environment in the park is very delicate and fragile. A conservative design was produced as to not disrupt the landscape more than what is necessary.

The surrounding views were closely recorded and analyzed so that new and dynamic views would be visible throughout the visitor center.

Unique experiences off the site were also analyzed. Cap Rock is a very interactive site feature. Throughout the visit families climbed through crevices and attempted to reach the peak.

Study models were used to understand frame and plane and their role in space articulation. The final model shows the dynamic water collecting roof and wrapping exterior spaces.